Susquehanna Health Patient Tower Expansion Williamsport, PA

PENN STATE AE SENIOR CAPSTONE PROJECT

Adam Lasher Construction Management Dr. Robert Leicht

- I. Project Background
- II. Analysis 1: Shift from Mobile Crane to Tower Crane
 - I. Site Logistic Impacts
 - II. Productivity and Schedule Impacts
 - III. Cost Impacts
- III. Analysis 2: Use of Prefabrication in Patient Rooms
 - I. Project Comparisons
 - II. Background of Prefabricated Items
 - III. Cost Impacts of Prefabrication
 - IV. Schedule Impacts of Prefabrication
 - V. Assumptions and Considerations
- IV. Analysis 3: Value Engineering of Roofing Systems and Alternatives
 - I. Analysis Background
 - II. Current Green Roof System
 - I. Design
 - II. Cost Impacts
 - III. EPDM Roof System
 - I. Design
 - II. Structural Impacts/Steel Reduction
 - III. Cost Impacts
 - IV. Photovoltaic Roof System
 - I. Design
 - II. Cost Impacts/Payback Period
- V. Lessons Learned and Recommendations
- VI. Acknowledgements

Susquehanna Health Patient Tower Expansion Williamsport, PA

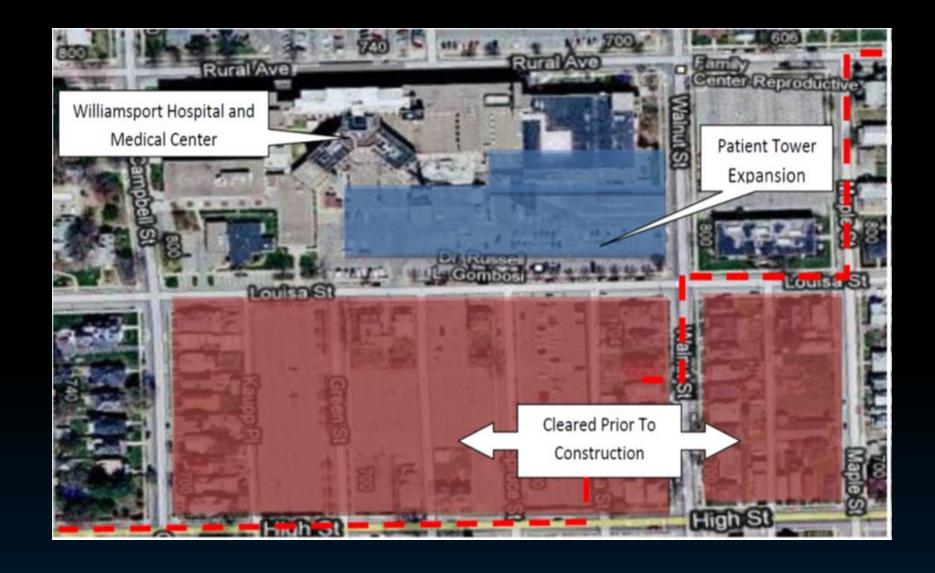
PENN STATE AE SENIOR CAPSTONE PROJECT

Adam Lasher | Construction Management Dr. Robert Leicht

- Project Background
- Analysis 1: Shift from Mobile Crane to Tower Crane
 - Site Logistic Impacts
 - Productivity and Schedule Impacts
 - III. Cost Impacts
- III. Analysis 2: Use of Prefabrication in Patient Rooms
 - **Project Comparisons**
 - Background of Prefabricated Items
 - III. Cost Impacts of Prefabrication
 - Schedule Impacts of Prefabrication
 - Assumptions and Considerations
- IV. Analysis 3: Value Engineering of Roofing Systems and Alternatives
 - Analysis Background
 - Current Green Roof System
 - Design
 - Cost Impacts
 - III. EPDM Roof System
 - Design
 - Structural Impacts/Steel Reduction
 - Cost Impacts
 - Photovoltaic Roof System IV.
 - Design
 - Cost Impacts/Payback Period
- Lessons Learned and Recommendations
- VI. Acknowledgements

Location:

Desígn:


Construction:

Project Background

777 Rural Avenue, Williamsport, PA Williamsport Hospital and Medical Center

Gross Building Area- 243,000 SF Construction Type-Hospital Addition

Delivery Method- Design-Bid-Build GMP Amount- \$82,297,101 *Construction Dates- 10/22/2009 – 9/19/2012*

- Project Background
- Analysis 1: Shift from Mobile Crane to Tower Crane
 - Site Logistic Impacts
 - Productivity and Schedule Impacts
 - III. Cost Impacts
- III. Analysis 2: Use of Prefabrication in Patient Rooms
 - Project Comparisons
 - Background of Prefabricated Items
 - III. Cost Impacts of Prefabrication
 - Schedule Impacts of Prefabrication IV.
 - Assumptions and Considerations
- IV. Analysis 3: Value Engineering of Roofing Systems and Alternatives
 - Analysis Background
 - Current Green Roof System
 - Design
 - Cost Impacts
 - III. EPDM Roof System
 - Design
 - Structural Impacts/Steel Reduction
 - Cost Impacts III.
 - Photovoltaic Roof System IV.
 - Design
 - Cost Impacts/Payback Period
- Lessons Learned and Recommendations
- VI. Acknowledgements

Structural System

Building Enclosure Curtain Wall Metal Panels

Project Background

- **Continuous Spread Footings Rigid Steel Moment Frame**
- Architectural Precast Panels

- Project Background
- Analysis 1: Shift from Mobile Crane to Tower Crane
 - Site Logistic Impacts
 - Productivity and Schedule Impacts
 - III. Cost Impacts
- III. Analysis 2: Use of Prefabrication in Patient Rooms
 - **Project Comparisons**
 - Background of Prefabricated Items
 - III. Cost Impacts of Prefabrication
 - Schedule Impacts of Prefabrication
 - Assumptions and Considerations
- IV. Analysis 3: Value Engineering of Roofing Systems and Alternatives
 - Analysis Background
 - Current Green Roof System
 - Design
 - Cost Impacts
 - EPDM Roof System III.
 - Design
 - Structural Impacts/Steel Reduction
 - Cost Impacts III.
 - Photovoltaic Roof System
 - Design
 - Cost Impacts/Payback Period
- Lessons Learned and Recommendations
- VI. Acknowledgements

Problem Identification

Due to weather and other delays the watertight milestone was in jeopardy of being hit.

project

Research Goal

through schedule savings Keep Walnut Street open Validate tower crane initial costs with income evaluation

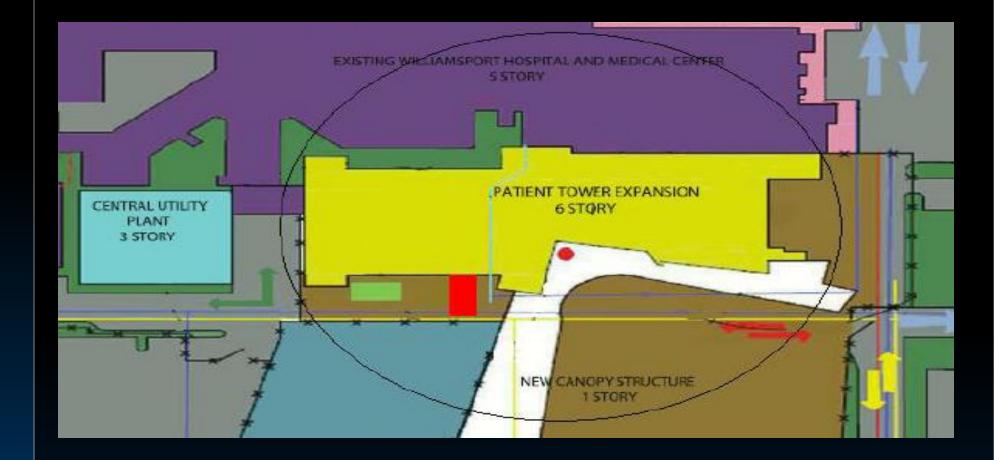
Problem Identification

Mobile cranes forced Walnut Street to be closed down for entire

Use a tower crane to reduce schedule and reduce overall costs

- Project Background
- Analysis 1: Shift from Mobile Crane to Tower Crane
 - Site Logistic Impacts
 - Productivity and Schedule Impacts
 - III. Cost Impacts
- III. Analysis 2: Use of Prefabrication in Patient Rooms
 - Project Comparisons
 - Background of Prefabricated Items
 - III. Cost Impacts of Prefabrication
 - Schedule Impacts of Prefabrication IV.
 - Assumptions and Considerations
- IV. Analysis 3: Value Engineering of Roofing Systems and Alternatives
 - Analysis Background
 - Current Green Roof System
 - Design
 - Cost Impacts
 - **EPDM Roof System** III.
 - Design
 - Structural Impacts/Steel Reduction
 - Cost Impacts III.
 - Photovoltaic Roof System IV.
 - Design
 - Cost Impacts/Payback Period
- Lessons Learned and Recommendations
- VI. Acknowledgements

Site Logistics Impacts


•Walnut Street can be open

material/man hoist

shakedown areas

• Waste Container will need to be moved to allow for

• Tower Crane will allow more organized steel

- Project Background
- Analysis 1: Shift from Mobile Crane to Tower Crane
 - Site Logistic Impacts
 - Productivity and Schedule Impacts
 - III. Cost Impacts
- III. Analysis 2: Use of Prefabrication in Patient Rooms
 - Project Comparisons
 - Background of Prefabricated Items
 - III. Cost Impacts of Prefabrication
 - Schedule Impacts of Prefabrication
 - Assumptions and Considerations
- IV. Analysis 3: Value Engineering of Roofing Systems and Alternatives
 - Analysis Background
 - Current Green Roof System
 - Design
 - Cost Impacts
 - III. EPDM Roof System
 - Design
 - Structural Impacts/Steel Reduction
 - Cost Impacts III.
 - Photovoltaic Roof System IV.
 - Design
 - Cost Impacts/Payback Period
- Lessons Learned and Recommendations
- VI. Acknowledgements

Methodology

RS Means is an inaccurate way of estimating productivity

Use Milton Hershey Children's Hospital project to analyze tower crane productivity Both projects are being constructed by L.F. Driscoll Both projects have same size steel crew Both are healthcare projects similar in size Both projects have similar structures

Tower crane was used due to site restrictions

Schedule Savings

- Project Background
- Analysis 1: Shift from Mobile Crane to Tower Crane
 - Site Logistic Impacts
 - Productivity and Schedule Impacts
 - III. Cost Impacts
- III. Analysis 2: Use of Prefabrication in Patient Rooms
 - Project Comparisons
 - Background of Prefabricated Items
 - III. Cost Impacts of Prefabrication
 - Schedule Impacts of Prefabrication IV.
 - Assumptions and Considerations
- IV. Analysis 3: Value Engineering of Roofing Systems and Alternatives
 - Analysis Background
 - Current Green Roof System
 - Design
 - Cost Impacts
 - III. EPDM Roof System
 - Design
 - Structural Impacts/Steel Reduction
 - Cost Impacts III.
 - Photovoltaic Roof System IV.
 - Design
 - Cost Impacts/Payback Period
- Lessons Learned and Recommendations
- VI. Acknowledgements

Productivity Comparison

Project	Total LF of Steel	Total Steel Schedule (Calendar days)	LF of Steel Erection Per Day	Using Tower Crane Erection Rate
Patient Tower Expansion	39,901	103 Days	387.40	95 Days
Hershey Children's Hospital	65,344	155 Days	421.57	

Schedule Savings

- Tower Crane increased productivity 34 LF/Day
- Total Schedule Savings: 8 Days

- Project Background
- Analysis 1: Shift from Mobile Crane to Tower Crane
 - Site Logistic Impacts
 - Productivity and Schedule Impacts
 - III. Cost Impacts
- III. Analysis 2: Use of Prefabrication in Patient Rooms
 - Project Comparisons
 - Background of Prefabricated Items
 - III. Cost Impacts of Prefabrication
 - IV. Schedule Impacts of Prefabrication
 - V. Assumptions and Considerations
- IV. Analysis 3: Value Engineering of Roofing Systems and Alternatives
 - Analysis Background
 - Current Green Roof System
 - Design
 - Cost Impacts
 - III. EPDM Roof System
 - Design
 - Structural Impacts/Steel Reduction
 - III. Cost Impacts
 - IV. Photovoltaic Roof System
 - Design
 - Cost Impacts/Payback Period
- Lessons Learned and Recommendations
- VI. Acknowledgements

Tower Crane vs. Mobile Crane

Crane Type 165 ton Demag AC 240 Ton Liebherr I Potain Model HDT

Concrete Pad and Removal	\$1,5000
Erection and Dismantle	\$25,000
Rental	\$120,000
Labor	\$224,000
Electrical and Carpentry	\$20,000
Total	\$404,000

Cost Impacts

	Duration Used	Crane Cost	Mobile vs. Tower
120	6.5 months	\$335,500	\$978,500
TM 1200	10 months	\$750,000	\$978,300
180 Ton	16 months	\$1,038,500	\$1,033,500

Total Additional Costs \$464,000

- Project Background
- Analysis 1: Shift from Mobile Crane to Tower Crane
 - Site Logistic Impacts
 - Productivity and Schedule Impacts
 - III. Cost Impacts
- III. Analysis 2: Use of Prefabrication in Patient Rooms
 - Project Comparisons
 - Background of Prefabricated Items
 - III. Cost Impacts of Prefabrication
 - Schedule Impacts of Prefabrication IV.
 - Assumptions and Considerations
- IV. Analysis 3: Value Engineering of Roofing Systems and Alternatives
 - Analysis Background
 - Current Green Roof System
 - Design
 - Cost Impacts
 - III. EPDM Roof System
 - Design
 - Structural Impacts/Steel Reduction
 - Cost Impacts III
 - Photovoltaic Roof System IV.
 - Design
 - Cost Impacts/Payback Period
- Lessons Learned and Recommendations
- VI. Acknowledgements

Conclusions and Recommendations

justify additional costs

Tower Crane only reduced schedule by 6 work days

- Walnut Street was able to be opened
- Additional cost of tower crane \$464,000
- Keep mobile cranes because Susquehanna Health can't

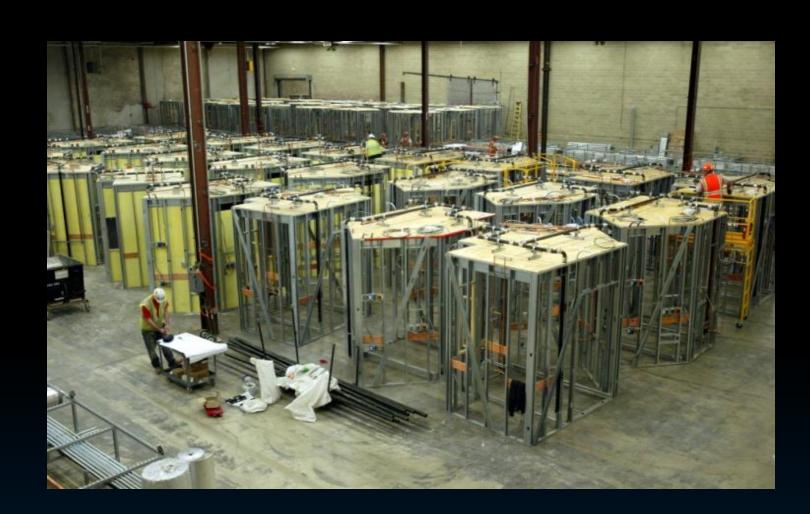
Tower Crane Analysis

- Project Background
- Analysis 1: Shift from Mobile Crane to Tower Crane
 - Site Logistic Impacts
 - Productivity and Schedule Impacts
 - III. Cost Impacts
- III. Analysis 2: Use of Prefabrication in Patient Rooms
 - **Project Comparisons**
 - Background of Prefabricated Items
 - III. Cost Impacts of Prefabrication
 - Schedule Impacts of Prefabrication
 - Assumptions and Considerations
- IV. Analysis 3: Value Engineering of Roofing Systems and Alternatives
 - Analysis Background
 - Current Green Roof System
 - Design
 - Cost Impacts
 - III. EPDM Roof System
 - Design
 - Structural Impacts/Steel Reduction
 - Cost Impacts III.
 - Photovoltaic Roof System
 - Design
 - Cost Impacts/Payback Period
- Lessons Learned and Recommendations
- VI. Acknowledgements

Problem Identification

Commissioning and testing/balancing on this project is a long and drawn out process that eats up schedule time. (215 days, 43 days/fl)

Project cannot be turned over until all commissioning and testing/balancing is complete

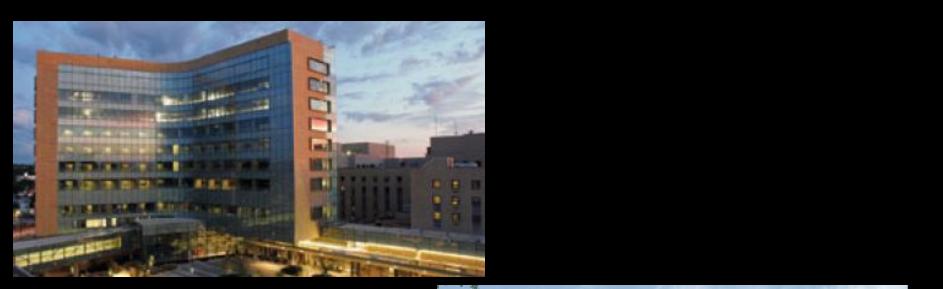

Research Goal

savings

Crítical Industry Issue

- Reduce schedule allowing for commissioning to take place sooner
- Use prefabrication to reduce total cost of project
- Perform income evaluation to see income generated from schedule

Prefabrication Analysis


- Project Background
- Analysis 1: Shift from Mobile Crane to Tower Crane
 - Site Logistic Impacts
 - II. Productivity and Schedule Impacts
 - III. Cost Impacts
- III. Analysis 2: Use of Prefabrication in Patient Rooms
 - Project Comparisons
 - II. Background of Prefabricated Items
 - III. Cost Impacts of Prefabrication
 - IV. Schedule Impacts of Prefabrication
 - V. Assumptions and Considerations
- IV. Analysis 3: Value Engineering of Roofing Systems and Alternatives
 - Analysis Background
 - Current Green Roof System
 - Design
 - Cost Impacts II.
 - III. EPDM Roof System
 - Design
 - Structural Impacts/Steel Reduction II.
 - III. Cost Impacts
 - IV. Photovoltaic Roof System
 - Design
 - II. Cost Impacts/Payback Period
- V. Lessons Learned and Recommendations
- VI. Acknowledgements

<u>_</u>
Project Name:
Location:
Construction Type
Size:
Cost:
Site Layout
Structure
Number of Stories
Typical Patient
Rooms
Crane Type
Façade
Prefabricated
Elements

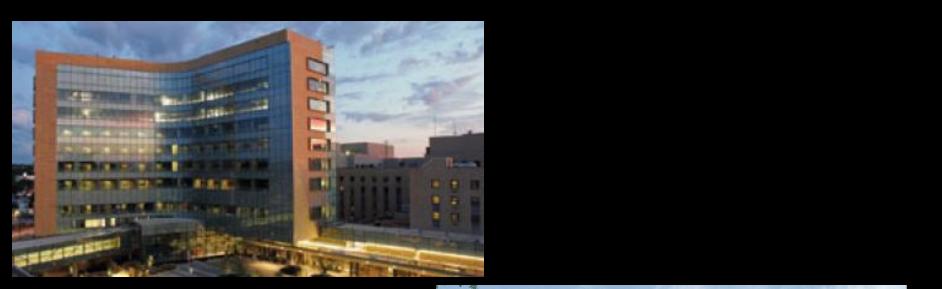
Project Comparisons

Prefabrication Analysis

	Project Summary Cor	nparisons
	Miami Valley Hospital Southeast	Susquehanna Health Patient Tower
	Addition	Expansion
	Dayton, Ohio	Williamsport, Pennsylvania
ype	Healthcare Addition	Healthcare Addition
	484,000 SF	243,000SF
	\$152,000,000	\$78,800,000
	Small/Congested/Limited Lay-	Non-Congested, Lay-down Area
	down Area	Available
	Steel Moment Frame	Steel Moment Frame
ies	12	б
	178	104
	Tower Crane	Mobile Crane
	Unitized Curtain Wall	Precast Panels
		Metal Panels
		Unitized Curtain Wall
	Headwalls, Footwalls, Bathroom	
	Units, Overhead Corridor Racks	•

- Project Background
- Analysis 1: Shift from Mobile Crane to Tower Crane
 - Site Logistic Impacts
 - Productivity and Schedule Impacts
 - III. Cost Impacts
- III. Analysis 2: Use of Prefabrication in Patient Rooms
 - Project Comparisons
 - Background of Prefabricated Items
 - III. Cost Impacts of Prefabrication
 - Schedule Impacts of Prefabrication
 - Assumptions and Considerations
- IV. Analysis 3: Value Engineering of Roofing Systems and Alternatives
 - Analysis Background
 - Current Green Roof System
 - Design
 - Cost Impacts
 - III. EPDM Roof System
 - Design
 - Structural Impacts/Steel Reduction
 - Cost Impacts III.
 - Photovoltaic Roof System IV.
 - Design
 - Cost Impacts/Payback Period
- Lessons Learned and Recommendations
- VI. Acknowledgements

Lessons Learned From Skanska


Prefabrication Analysis

Never underestimate rate of productivity and always have a back-up plan

Delays in the field happen. Learn how to fix the problem without just throwing money at it

All aspects of the project team must buy into prefabrication

Utilize strengths to their absolute

- Project Background
- Analysis 1: Shift from Mobile Crane to Tower Crane
 - Site Logistic Impacts
 - Productivity and Schedule Impacts
 - III. Cost Impacts
- III. Analysis 2: Use of Prefabrication in Patient Rooms
 - Project Comparisons
 - II. Background of Prefabricated Items
 - III. Cost Impacts of Prefabrication
 - IV. Schedule Impacts of Prefabrication
 - V. Assumptions and Considerations
- IV. Analysis 3: Value Engineering of Roofing Systems and Alternatives
 - Analysis Background
 - Current Green Roof System
 - Design
 - Cost Impacts
 - III. EPDM Roof System
 - Design
 - Structural Impacts/Steel Reduction
 - III. Cost Impacts
 - IV. Photovoltaic Roof System
 - Design
 - II. Cost Impacts/Payback Period
- . Lessons Learned and Recommendations
- VI. Acknowledgements

		(Figures Based	l on 15 Man Crew Size a	nd 5 Day Week)	
Prefabricated Unit	Number of Units	Total Time to Fabricate		Total Time to Fabricate at (50% Increased Efficiency)	
Headwall	52	2.1	25 Days	21 Days	s 16.5 Days
Footwall	56	2.5	23 Days	19.5 Days	s 14.5 Days
Patient Bathrooms	104	2	52 Days	41.5 Days	s 29 Days
		Total	100 Days	82 Days	60 Days
			Savings	18 Days	s 40 Days

Fabrication

Prefabrication Analysis

100 Days cut from 6th floor schedule 40 Day reduction in manpower

Prefabricated Unit	Number of Units	Time (Per 8 Hour			Total Patinet Tower Expansion Installation Time (Using New Installation Time)
Headwall	52	-	_	32 Units	1.63≈2days≈13 Hours
Footwall	56	-	-	32 Units	1.75≈2days≈14 Hours
Patient Bathrooms	104	33 Units	3.5 Days/ 25.5 Hours	36 Units	2.88≈3 Days≈23.11 Hours
				Total	6.5 Days

20 Deliveries Total 3 Days

- Project Background
- Analysis 1: Shift from Mobile Crane to Tower Crane
 - Site Logistic Impacts
 - Productivity and Schedule Impacts
 - III. Cost Impacts
- III. Analysis 2: Use of Prefabrication in Patient Rooms
 - Project Comparisons
 - Background of Prefabricated Items
 - III. Cost Impacts of Prefabrication
 - IV. Schedule Impacts of Prefabrication
 - Assumptions and Considerations
- IV. Analysis 3: Value Engineering of Roofing Systems and Alternatives
 - Analysis Background
 - Current Green Roof System
 - Design
 - Cost Impacts
 - III. EPDM Roof System
 - Design
 - Structural Impacts/Steel Reduction
 - III. Cost Impacts
 - Photovoltaic Roof System IV.
 - Design
 - Cost Impacts/Payback Period
- Lessons Learned and Recommendations
- VI. Acknowledgements

lobby

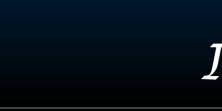
Schedule Savings

- 6th Floor Schedule Savings 93 days (100 days- 6.4 installation days)
- Commissioning Schedule Savings New limiting factor for commissioning is the 1st floor
 - Translates to 43 days of commissioning accelerated
- Total Schedule Saving of 40 days

Prefabrication Analysis

- Project Background
- Analysis 1: Shift from Mobile Crane to Tower Crane
 - Site Logistic Impacts
 - Productivity and Schedule Impacts
 - III. Cost Impacts
- III. Analysis 2: Use of Prefabrication in Patient Rooms
 - Project Comparisons
 - II. Background of Prefabricated Items
 - III. Cost Impacts of Prefabrication
 - IV. Schedule Impacts of Prefabrication
 - V. Assumptions and Considerations
- IV. Analysis 3: Value Engineering of Roofing Systems and Alternatives
 - Analysis Background
 - Current Green Roof System
 - Design
 - Cost Impacts II.
 - III. EPDM Roof System
 - Design
 - Structural Impacts/Steel Reduction
 - III. Cost Impacts
 - IV. Photovoltaic Roof System
 - Design
 - II. Cost Impacts/Payback Period
- V. Lessons Learned and Recommendations
- VI. Acknowledgements

Added Co
Trucking
Warehouse Rental
(3 Months)
Dumpster
Extra Insurance
Additional Supervisio
Total


Cost Impacts

Prefabrication Analysis

ost		Cost Reductions		
	\$296	General Conditions Savings	\$197,564	
	\$15,267	Man Power Reduction	\$6,870	
		(229 Hours)		
	\$1,200			
	\$13,520			
m	-			
	\$30,283	Total	\$204,434	
	Total Ne	t Savings: \$174,151		

Total Net Savings \$174,151

- Project Background
- Analysis 1: Shift from Mobile Crane to Tower Crane
 - Site Logistic Impacts
 - Productivity and Schedule Impacts
 - III. Cost Impacts
- III. Analysis 2: Use of Prefabrication in Patient Rooms
 - Project Comparisons
 - Background of Prefabricated Items
 - III. Cost Impacts of Prefabrication
 - Schedule Impacts of Prefabrication IV.
 - Assumptions and Considerations
- IV. Analysis 3: Value Engineering of Roofing Systems and Alternatives
 - Analysis Background
 - Current Green Roof System
 - Design
 - Cost Impacts
 - III. EPDM Roof System
 - Design
 - Structural Impacts/Steel Reduction
 - Cost Impacts III.
 - Photovoltaic Roof System IV.
 - Design
 - Cost Impacts/Payback Period
- Lessons Learned and Recommendations
- VI. Acknowledgements

Projected Monthly Income \$198,469

Total Schedule Savings 40 Days

Income Generated \$258,010

Income Evaluation

Total Savings with Income Generated: \$432,161

Prefabrication Analysis

- Project Background
- Analysis 1: Shift from Mobile Crane to Tower Crane
 - Site Logistic Impacts
 - Productivity and Schedule Impacts
 - III. Cost Impacts
- III. Analysis 2: Use of Prefabrication in Patient Rooms
 - Project Comparisons
 - Background of Prefabricated Items
 - III. Cost Impacts of Prefabrication
 - IV. Schedule Impacts of Prefabrication
 - Assumptions and Considerations V.
- IV. Analysis 3: Value Engineering of Roofing Systems and Alternatives
 - Analysis Background
 - Current Green Roof System
 - Design
 - Cost Impacts
 - III. EPDM Roof System
 - Design
 - Structural Impacts/Steel Reduction
 - III. Cost Impacts
 - Photovoltaic Roof System IV.
 - Design
 - Cost Impacts/Payback Period
- Lessons Learned and Recommendations
- VI. Acknowledgements

Shop Contractors

Assumptions and Considerations

Prefabrication Analysis

Union Contractors will work in warehouse with Open-

Design team can coordinate with owner's staff to produce mock-ups 3 weeks ahead of time

- Project Background
- Analysis 1: Shift from Mobile Crane to Tower Crane
 - Site Logistic Impacts
 - Productivity and Schedule Impacts
 - III. Cost Impacts
- III. Analysis 2: Use of Prefabrication in Patient Rooms
 - Project Comparisons
 - Background of Prefabricated Items
 - III. Cost Impacts of Prefabrication
 - IV. Schedule Impacts of Prefabrication
 - Assumptions and Considerations V.
- IV. Analysis 3: Value Engineering of Roofing Systems and Alternatives
 - Analysis Background
 - Current Green Roof System
 - Design
 - Cost Impacts
 - III. EPDM Roof System
 - Design
 - Structural Impacts/Steel Reduction
 - III. Cost Impacts
 - Photovoltaic Roof System IV.
 - Design
 - Cost Impacts/Payback Period
- Lessons Learned and Recommendations
- VI. Acknowledgements

a month

Prefabrication Analysis

• Prefabrication can be used to reduce the schedule by over

• Combined with income evaluation total savings can be upwards of \$432,161 for a mere \$30, 283

- Project Background
- Analysis 1: Shift from Mobile Crane to Tower Crane
 - Site Logistic Impacts
 - Productivity and Schedule Impacts
 - III. Cost Impacts
- III. Analysis 2: Use of Prefabrication in Patient Rooms
 - **Project Comparisons**
 - Background of Prefabricated Items
 - III. Cost Impacts of Prefabrication
 - Schedule Impacts of Prefabrication
 - Assumptions and Considerations
- IV. Analysis 3: Value Engineering of Roofing Systems and Alternatives
 - Analysis Background
 - Current Green Roof System
 - Design
 - Cost Impacts
 - EPDM Roof System III.
 - Design
 - Structural Impacts/Steel Reduction
 - Cost Impacts
 - Photovoltaic Roof System
 - Design
 - Cost Impacts/Payback Period
- Lessons Learned and Recommendations
- VI. Acknowledgements

Problem Identification

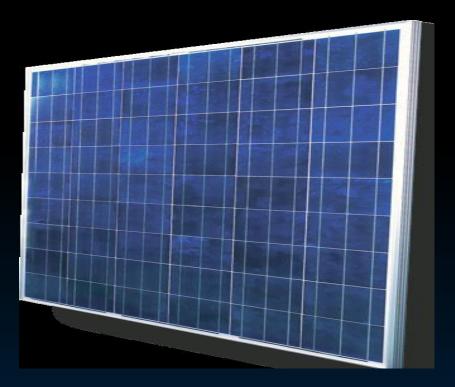
Problem Identification

Very little value engineering was done on this project which is a problem for Non-Profit organizations such as Susquehanna Health

Last minute design changes lead a inefficient green roof, loss of concept in the design, and overdesigned steel

design

Research Goals Reduce the overall cost of the project by value engineering green roofs and provide alternatives the align more with owner's goals


Green roofs are expensive and offer little payback especially in this

Roofing Analysis



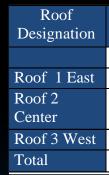
Vegetative Mat with Nylon Entanglement

Poly-Crystalline Solar Panel

- Project Background
- Analysis 1: Shift from Mobile Crane to Tower Crane
 - Site Logistic Impacts
 - Productivity and Schedule Impacts
 - III. Cost Impacts
- III. Analysis 2: Use of Prefabrication in Patient Rooms
 - Project Comparisons
 - Background of Prefabricated Items
 - III. Cost Impacts of Prefabrication
 - IV. Schedule Impacts of Prefabrication
 - Assumptions and Considerations
- IV. Analysis 3: Value Engineering of Roofing Systems and Alternatives
 - Analysis Background
 - Current Green Roof System
 - Design
 - Cost Impacts
 - III. EPDM Roof System
 - Design
 - Structural Impacts/Steel Reduction
 - Cost Impacts III.
 - Photovoltaic Roof System IV.
 - Design
 - Cost Impacts/Payback Period
- Lessons Learned and Recommendations
- VI. Acknowledgements

Problem Background

Design Features


Multi-tiered green roof system gives patients a one-on-one relationship with a green environment

Green roof is a completely aesthetic feature and provides no substantial drainage or thermal benefits

Green roof used is very minimal vegetative mat with nylon entanglement

- Project Background
- Analysis 1: Shift from Mobile Crane to Tower Crane
 - Site Logistic Impacts
 - Productivity and Schedule Impacts
 - III. Cost Impacts
- III. Analysis 2: Use of Prefabrication in Patient Rooms
 - Project Comparisons
 - Background of Prefabricated Items
 - III. Cost Impacts of Prefabrication
 - Schedule Impacts of Prefabrication IV.
 - Assumptions and Considerations
- IV. Analysis 3: Value Engineering of Roofing Systems and Alternatives
 - Analysis Background
 - Current Green Roof System
 - Design
 - Cost Impacts
 - III. EPDM Roof System
 - Design
 - Structural Impacts/Steel Reduction
 - Cost Impacts III.
 - Photovoltaic Roof System IV.
 - Design
 - Cost Impacts/Payback Period
- Lessons Learned and Recommendations
- VI. Acknowledgements

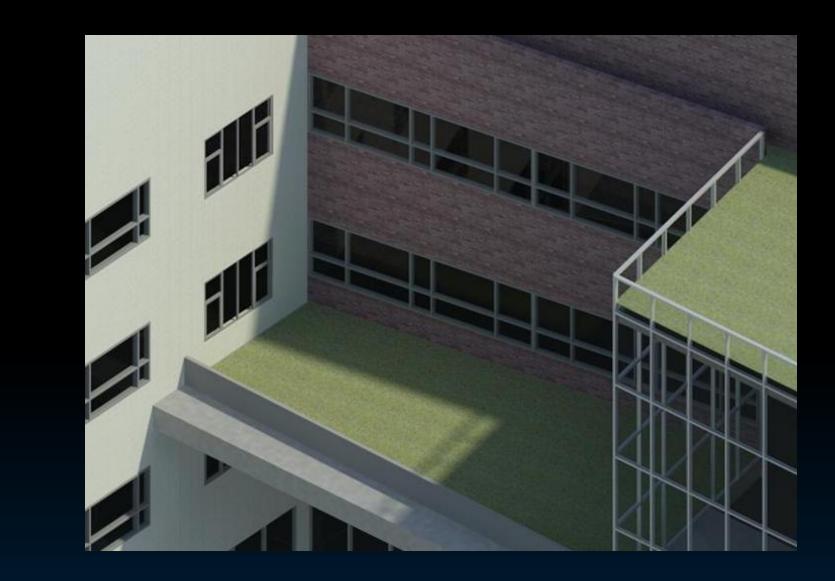
Current design costs a total of \$118,724

Cost of Current Design

Roofing Analysis

Area (SF)	Unit Cost /SF	Material Cost	Labor Cost	Total Labor Cost	Total
8,002	\$7.50	\$60,015	\$3.00/SF	\$24,006	\$84,021
1,070	\$7.50	\$8,025	\$3.00/SF	\$3,210	\$11,235
2,235	\$7.50	\$16,763	\$3.00/SF	\$6,705	\$23,468
2,200	<i><i><i>ψ</i>ιεσ</i></i>	\$84,803	\$0.000 DI	<i>40,700</i>	\$118,724

This system provides no payback and is a completely aesthetic feature


- Project Background
- Analysis 1: Shift from Mobile Crane to Tower Crane
 - Site Logistic Impacts
 - Productivity and Schedule Impacts
 - III. Cost Impacts
- III. Analysis 2: Use of Prefabrication in Patient Rooms
 - Project Comparisons
 - II. Background of Prefabricated Items
 - III. Cost Impacts of Prefabrication
 - IV. Schedule Impacts of Prefabrication
 - V. Assumptions and Considerations
- IV. Analysis 3: Value Engineering of Roofing Systems and Alternatives
 - Analysis Background
 - Current Green Roof System
 - Design
 - Cost Impacts II.
 - III. EPDM Roof System
 - Design
 - Structural Impacts/Steel Reduction II.
 - III. Cost Impacts
 - IV. Photovoltaic Roof System
 - Design
 - II. Cost Impacts/Payback Period
- V. Lessons Learned and Recommendations
- VI. Acknowledgements

Potential Candidates for VE

Roofing Analysis

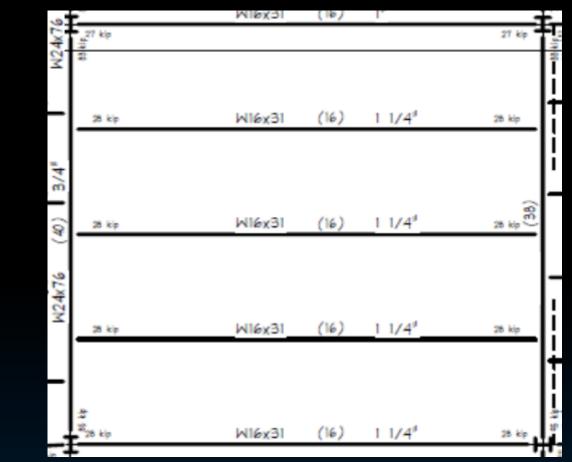
- Project Background
- Analysis 1: Shift from Mobile Crane to Tower Crane
 - Site Logistic Impacts
 - Productivity and Schedule Impacts
 - III. Cost Impacts
- III. Analysis 2: Use of Prefabrication in Patient Rooms
 - **Project Comparisons**
 - Background of Prefabricated Items
 - III. Cost Impacts of Prefabrication
 - IV. Schedule Impacts of Prefabrication
 - Assumptions and Considerations
- IV. Analysis 3: Value Engineering of Roofing Systems and Alternatives
 - Analysis Background
 - Current Green Roof System
 - Design
 - Cost Impacts
 - **EPDM Roof System** III.
 - Design
 - Structural Impacts/Steel Reduction
 - Cost Impacts III
 - Photovoltaic Roof System IV.
 - Design
 - Cost Impacts/Payback Period
- Lessons Learned and Recommendations
- VI. Acknowledgements

Structural Breadth

Girder Redesign

W24X68

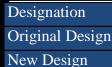
Steel Beam Redesign Original Design Called For W16X31


> After taking out the 7psf dead load for green roof it was determined that steel could not be reduced

Original Design Called For W24x76

After taking out green roof dead load girders could be reduced to

Roofing Analysis



- Project Background
- Analysis 1: Shift from Mobile Crane to Tower Crane
 - Site Logistic Impacts
 - Productivity and Schedule Impacts
 - III. Cost Impacts
- III. Analysis 2: Use of Prefabrication in Patient Rooms
 - Project Comparisons
 - Background of Prefabricated Items
 - III. Cost Impacts of Prefabrication
 - IV. Schedule Impacts of Prefabrication
 - Assumptions and Considerations
- IV. Analysis 3: Value Engineering of Roofing Systems and Alternatives
 - Analysis Background
 - Current Green Roof System
 - Design
 - Cost Impacts
 - III. EPDM Roof System
 - Design
 - Structural Impacts/Steel Reduction
 - Cost Impacts III.
 - Photovoltaic Roof System IV.
 - Design
 - Cost Impacts/Payback Period
- Lessons Learned and Recommendations
- VI. Acknowledgements

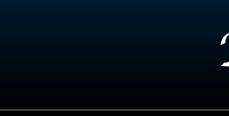
Value Engineering Selected Roofs

Steel Reduction Savings

Total Savings

Value Enginee Roof Steel Roof 1 East Roof 2 Center Roof 3 West

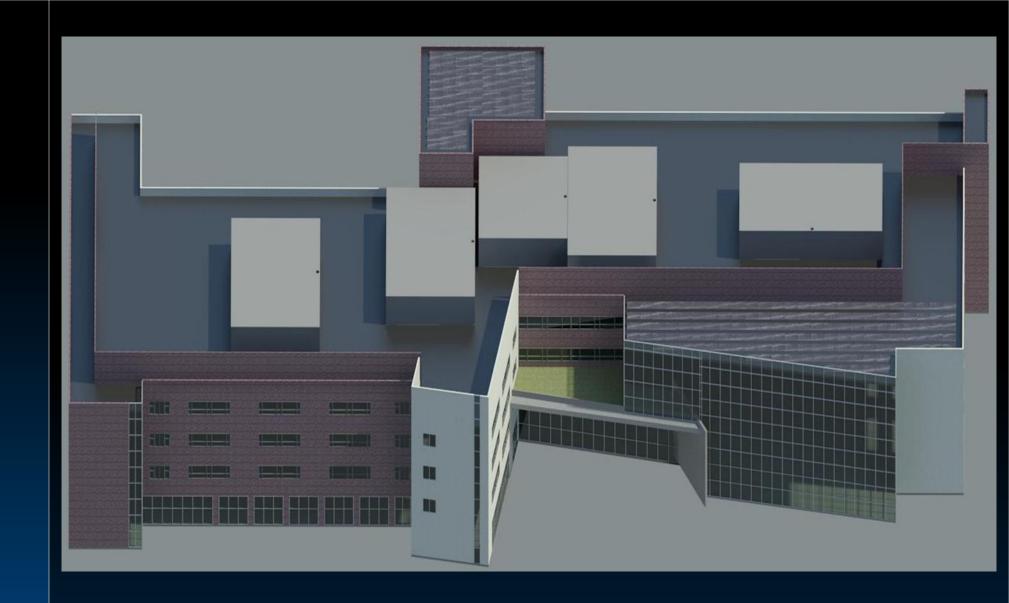
Roofing Analysis


	Shape/Size	LF	Cost/LF	Total Cost
1	W24X76	967	\$92.00	\$88,964.00
	W24X68	967	\$82.50	\$79,777.50
			Total Savings	\$9,186.50

red System	VE Y/N	System Cost	Savings	Total Savings
	Yes	\$79,777.50	\$9186.50	\$9,187
	Yes	\$84,021	\$84,021	\$84,021
	No	\$11,235	-	-
	Yes	\$23,468	\$23,468	\$23,468
			Total Savings	\$116,676

Total Savings: \$116,676

- Project Background
- Analysis 1: Shift from Mobile Crane to Tower Crane
 - Site Logistic Impacts
 - Productivity and Schedule Impacts
 - III. Cost Impacts
- III. Analysis 2: Use of Prefabrication in Patient Rooms
 - Project Comparisons
 - Background of Prefabricated Items
 - III. Cost Impacts of Prefabrication
 - Schedule Impacts of Prefabrication
 - Assumptions and Considerations
- IV. Analysis 3: Value Engineering of Roofing Systems and Alternatives
 - Analysis Background
 - Current Green Roof System
 - Design
 - Cost Impacts
 - III. EPDM Roof System
 - Design
 - Structural Impacts/Steel Reduction
 - Cost Impacts III.
 - Photovoltaic Roof System
 - Design
 - Cost Impacts/Payback Period
- Lessons Learned and Recommendations
- VI. Acknowledgements


054.2 kW System

Photovoltaic Roof

- Basic Photovoltaic Information Roof Orientation-Directly South Membrane Mounted System 0258 Poly-Crystalline Solar Panels

 - oInverter located on roof behind parapet wall

Roofing Analysis

- Project Background
- Analysis 1: Shift from Mobile Crane to Tower Crane
 - Site Logistic Impacts
 - II. Productivity and Schedule Impacts
 - III. Cost Impacts
- III. Analysis 2: Use of Prefabrication in Patient Rooms
 - Project Comparisons
 - II. Background of Prefabricated Items
 - III. Cost Impacts of Prefabrication
 - IV. Schedule Impacts of Prefabrication
 - V. Assumptions and Considerations
- IV. Analysis 3: Value Engineering of Roofing Systems and Alternatives
 - Analysis Background
 - Current Green Roof System
 - Design
 - Cost Impacts
 - III. EPDM Roof System
 - Design
 - Structural Impacts/Steel Reduction
 - III. Cost Impacts
 - IV. Photovoltaic Roof System
 - Design
 - II. Cost Impacts/Payback Period
- V. Lessons Learned and Recommendations
- VI. Acknowledgements

Photovoltaic Material Costs								
Material	Quantity	Cost Per	Total Cost	Installation	Total	Total		
		Unit		Cost/Unit	Installation Cost			
STP210-	258	\$610.00	\$157,380	\$7.00	\$1,806	\$159,186		
18/Ud								
Sunny	1	\$20,816.80	\$20,816.8	\$500.00	\$500	\$21,317		
Tower with				1				
6 Sunny				1				
Boy				1				
8000US				'				
4/0 Wire	160	\$35	\$5,600	-	-	\$5,600		
Mounting	258	\$50	\$12,900	-	-	\$12,900		
					Total	\$199,003		

Payback Period of 25 years

Photovoltaíc Costs

After Rebates and Incentives \$165,661

Roofing Analysis

Year	Energy Cost (\$/kW)	Energy Savings (kWH)	Yearly Savings	Total Savings
1	\$0.09	59884	\$5,569.21	\$5,389.65
2	\$0.09	59884	\$5,569.21	\$10,958.86
3	\$0.09	59884	\$5,569.21	\$16,528.07
4	\$0.10	59884	\$5,988.40	\$22,516.47
5	\$0.10	59884	\$5,988.40	\$28,504.87
6	\$0.10	59884	\$5,988.40	\$34,493.27
7	\$0.10	59884	\$5,988.40	\$40,481.67
8	\$0.10	59884	\$5,988.40	\$46,470.07
9	\$0.10	59884	\$5,988.40	\$52,458.47
10	\$0.11	59884	\$6.587.24	\$59.045.71
11	\$0.11	59884	\$6,587.24	\$65,632.95
12	\$0.11	59884	\$6,587.24	\$72,220.19
13	\$0.11	59884	\$6,587.24	\$78,807.43
14	\$0.11	59884	\$6,587.24	\$85,394.67
15	\$0.11	59884	\$6,587.24	\$91,981.91
16	\$0.12	59884	\$7,186.08	\$99,167.99
17	\$0.12	59884	\$7,186.08	\$106,354.07
18	\$0.12	59884	\$7,186.08	\$113,540.15
19	\$0.12	59884	\$7,186.08	\$120,726.23
20	\$0.12	59884	\$7,186.08	\$127,912.31
21	\$0.12	59884	\$7,186.08	\$135,098.39
22	\$0.13	59884	\$7,784.92	\$142,883.31
23	\$0.13	59884	\$7,784.92	\$150,668.23
24	\$0.13	59884	\$7,784.92	\$158,453.15
25	\$0.13	59884	\$7,784.92	\$166,238.07

- Project Background
- Analysis 1: Shift from Mobile Crane to Tower Crane
 - Site Logistic Impacts
 - Productivity and Schedule Impacts
 - III. Cost Impacts
- III. Analysis 2: Use of Prefabrication in Patient Rooms
 - Project Comparisons
 - Background of Prefabricated Items
 - III. Cost Impacts of Prefabrication
 - IV. Schedule Impacts of Prefabrication
 - Assumptions and Considerations V.
- IV. Analysis 3: Value Engineering of Roofing Systems and Alternatives
 - Analysis Background
 - Current Green Roof System
 - Design
 - Cost Impacts
 - III. EPDM Roof System
 - Design
 - Structural Impacts/Steel Reduction
 - III. Cost Impacts
 - Photovoltaic Roof System IV.
 - Design
 - Cost Impacts/Payback Period
- Lessons Learned and Recommendations
- VI. Acknowledgements

Conclusions and Recommendations

Leave steel overdesigned

- •Value Engineer East and West Green Roofs
- OUse money saved to put towards PV arrays and have a new payback period of 11 years

Roofing Analysis

- Project Background
- Analysis 1: Shift from Mobile Crane to Tower Crane
 - Site Logistic Impacts
 - Productivity and Schedule Impacts
 - III. Cost Impacts
- III. Analysis 2: Use of Prefabrication in Patient Rooms
 - Project Comparisons
 - II. Background of Prefabricated Items
 - III. Cost Impacts of Prefabrication
 - IV. Schedule Impacts of Prefabrication
 - V. Assumptions and Considerations
- IV. Analysis 3: Value Engineering of Roofing Systems and Alternatives
 - Analysis Background
 - Current Green Roof System
 - Design
 - Cost Impacts
 - III. EPDM Roof System
 - Design
 - Structural Impacts/Steel Reduction
 - III. Cost Impacts
 - IV. Photovoltaic Roof System
 - Design
 - Cost Impacts/Payback Period
- V. Lessons Learned and Recommendations
- VI. Acknowledgements

Acknowledgements

Penn State AE Faculty Dr. Robert Leicht- CM Advisor

My Brother John Lasher AE Friends and Family